Pain in Older People

Robert D. Helme and Stephen J. Gibson

National Ageing Research Institute, Parkville, Victoria, Australia

According to self-report measures, acute pain probably occurs at much the same rate across all age groups. Chronic pain is experienced more by older people, but this increase does not continue beyond the seventh decade. The elderly often experience chronic pain in the joints, back, legs, and feet; they appear to suffer less visceral pain and headache than younger people. The plateau in overall chronic pain prevalence with age may reflect a balance between age-related impairment of the nociceptive function of the nervous system and an increase in the pathological load that accompanies old age. The contribution of other dimensions of the pain experience to this equation can only be discovered through longitudinal studies that focus primarily on pain rather than addressing pain as an ancillary to other aspects of aging.

PREVALENCE OF PAIN IN OLDER PEOPLE

The population prevalence and characteristics of pain are difficult to ascertain, and comparisons across studies are complex. Moreover, many common pain problems (e.g., the suffering associated with fractures or cancer) may seriously afflict the person involved, but are short-lived because of rapid resolution or mortality and so are not reflected in cross-sectional prevalence studies. Even chronic conditions well known to increase with age, such as central post-stroke pain (Leijon et al. 1989) and postherpetic neuralgia (Portenoy et al. 1986), rarely feature because of their low incidence compared to the overwhelming frequency and chronicity of degenerative joint disease. Most prevalence studies are also unable to incorporate the large number of questions needed to adequately describe the pain experience: where is the site of pain; is it continuous or intermittent; what has been its duration; what is its quality and severity at different times; how is it aggravated and relieved; and how has it been treated? We might also address the effect of pain on quality of life and mood, how pain relates to comorbidity, and its effect on caregivers, and then shift our focus of attention to another pain complaint (Ferrell et al. 1990; Mobily et al. 1994) and repeat this entire battery of questions.

This complexity is compounded by the fact that most epidemiological studies of pain in older people were not designed with the primary object of examining the problem of pain. Pain is either an afterthought or a minor aspect of the study in hand, or the results on pain prevalence were derived later from more general data by a second group of researchers. Presumably the difficulty is the cost of such studies, particularly if a longitudinal element is incorporated into the study design.

Yet the epidemiological study of pain is important as it assists us to define the extent of the problem, which in turn helps determine resource allocation and generates important questions relevant to the pathophysiology, psychopathology, and pathogenesis of pain itself. Such factors are usually hidden in the morass of details that must be interpreted for the typical clinic patient with chronic pain. We must consider several factors in reviewing epidemiological studies of pain prevalence in the elderly. These include the selection of the study population, which may comprise random samples of individuals from the community or convenience samples from pain clinics, general practice groups, or institutions. The method of contact, response rates, age distribution of the sample, and questions asked are also important considerations.
FIELD STUDIES

One of the most quoted studies is that by Crook et al. (1984), who randomly sampled the patients of a group of general practitioners located near Toronto, Canada. Their telephone survey had a gratifying 95% response rate, but there were few participants over the age of 80, a problem common to most community studies that explore issues relevant to the elderly. Questions regarding the temporal nature of pain did not follow the usual pattern of description for acute and chronic pain, and this study’s classification of pain as temporary or persistent is not easily compared with classifications used in other studies. Nevertheless, it was one of the first studies to clearly demonstrate increased pain prevalence with increasing age, and it highlighted pain as a frequent problem for a large number of older people. Its finding that temporary pain had the same prevalence at all ages is intriguing, and it remains the only study to have reported age-related prevalence for acute pain of any type.

However, other studies were not necessarily able to replicate Crook’s results on persistent or chronic pain. Table I summarizes recent studies that report pain prevalence among older people. Fig. 1 contains prevalence data from 11 studies that contain sufficient detail to allow comparison of overall pain rates across a wide age range. Gibson and Helme (1995) recently reviewed these studies, which collectively suggest a peak or plateau in the prevalence of pain by age 65 (Brattberg et al. 1989, 1996; Andersson et al. 1993) and a decline in reported pain in the old old (75–84 years) and oldest old (85+) (Roy and Thomas 1987; Mobily et al. 1994; Brattberg et al. 1996).

However, other studies were not necessarily able to replicate Crook’s results on persistent or chronic pain. Table I summarizes recent studies that report pain prevalence among older people. Fig. 1 contains prevalence data from 11 studies that contain sufficient detail to allow comparison of overall pain rates across a wide age range. Gibson and Helme (1995) recently reviewed these studies, which collectively suggest a peak or plateau in the prevalence of pain by age 65 (Brattberg et al. 1989, 1996; Andersson et al. 1993) and a decline in reported pain in the old old (75–84 years) and oldest old (85+) (Roy and Thomas 1987; Mobily et al. 1994; Brattberg et al. 1996).

We recently completed a study of a community sample from Melbourne, Australia (Health Status Of Older People [HSOP]; Kendig et al. 1996). A sample of 1000 English-speaking persons aged 65 years and over was randomly selected from electoral rolls (voting is compulsory for all Australian citizens between the ages of 18 and 70, and the names of all adults are maintained on the rolls, regardless of age). Only 12% of residents over age 70 were not Australian citizens, and most of this group were of non-English-speaking background and were beyond the scope of the study. The response rate among participants was 70%, which is common for this type of study. Trained researchers interviewed subjects and obtained answers to a wide

<table>
<thead>
<tr>
<th>20 years</th>
<th>40 years</th>
<th>60 years</th>
<th>80 years</th>
<th>100 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crook et al. 1984</td>
<td>11</td>
<td>17</td>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>Brattberg et al. 1989</td>
<td>34</td>
<td>50</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Roy and Thomas 1987</td>
<td>26</td>
<td>34</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>Magni et al. 1993</td>
<td>37</td>
<td>48</td>
<td>64</td>
<td>65</td>
</tr>
<tr>
<td>Andersson et al. 1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobily et al. 1994</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barberber et al. 1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brattberg et al. 1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kendig et al. 1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sternbach 1986</td>
<td>41</td>
<td>71</td>
<td>50</td>
<td>31</td>
</tr>
<tr>
<td>Joint pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head pain</td>
<td>85</td>
<td>50</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>62</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Von Korff et al. 1988</td>
<td>29</td>
<td>24</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Head pain</td>
<td>17</td>
<td>16</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest pain</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

Fig. 1. Pain prevalence (%) across the adult lifespan.
range of demographic and social questions as well as details about active disease states, functional ability, and attitudes to health. A brief physical examination completed the interview. The interview included a brief series of questions on pain, its expectation, frequency, site, severity, presumed cause, and treatment. Representative data are shown in Table II (adapted from Helme and Gibson 1997). The prevalence of pain considered to be “persistent, or bothersome, or limiting activities” over the preceding 12 months was essentially the same at all ages above 65. The stability of pain prevalence with increasing age is best shown for the group who did not report pain at all over this time interval; 44% of subjects within each of the three age cohorts had no pain. These figures are in general agreement with the studies shown in Fig. 1, and include a reasonable sample of persons over the age of 85. The sociodemographic factors that were associated with increased pain report were low educational status (odds ratio [OR] = 1.6) and a history of unpaid em-

<table>
<thead>
<tr>
<th>Reference</th>
<th>Type of Study</th>
<th>Type of Pain</th>
<th>Source of Sample</th>
<th>Sample Size (≥65 y)</th>
<th>Pain Severity</th>
<th>Duration of Symptoms</th>
<th>Type of Prevalence Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crook et al. 1984</td>
<td>Telephone survey</td>
<td>All types</td>
<td>GP practice</td>
<td>827 (107*)</td>
<td>Often troubled by pain</td>
<td>Previous 2 wk</td>
<td>Period</td>
</tr>
<tr>
<td>Sternbach 1986</td>
<td>Telephone survey</td>
<td>Headache, backache, muscle, joint, stomach, premenstrual, dental</td>
<td>Random population sample</td>
<td>1254 (179)</td>
<td>Any pain</td>
<td>Previous 12 mo</td>
<td>Period</td>
</tr>
<tr>
<td>Roy and Thomas 1987</td>
<td>Telephone survey</td>
<td>All types</td>
<td>Convenience sample</td>
<td>205 (205)</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Point</td>
</tr>
<tr>
<td>Von Korff et al. 1988</td>
<td>Postal survey</td>
<td>Back, head, abdomen, face, chest</td>
<td>Stratified random population sample</td>
<td>1016 (77)</td>
<td>Mild to severe of >1 d duration</td>
<td>Previous 6 mo</td>
<td>Period</td>
</tr>
<tr>
<td>Brattberg 1989</td>
<td>Postal survey</td>
<td>All types</td>
<td>Random population sample</td>
<td>1009 (183)</td>
<td>Affected to severe degree</td>
<td><1 mo to >6 mo</td>
<td>Period</td>
</tr>
<tr>
<td>Magni et al. 1993 †</td>
<td>Interview</td>
<td>Musculo-skeletal</td>
<td>Stratified random population sample</td>
<td>3023 (333)</td>
<td>Not asked</td>
<td>Previous 12 mo</td>
<td>Period</td>
</tr>
<tr>
<td>Andersson et al. 1993</td>
<td>Postal survey</td>
<td>All types</td>
<td>Random population sample</td>
<td>1806 (285)</td>
<td>Weak to intense</td>
<td>>3 mo</td>
<td>Period</td>
</tr>
<tr>
<td>Mobily et al. 1994‡</td>
<td>Interview</td>
<td>Legs, joints, back, chest</td>
<td>Random rural population sample</td>
<td>3097 (3097)</td>
<td>Been troubled, persistent, bothersome</td>
<td>Previous 12 mo</td>
<td>Period</td>
</tr>
<tr>
<td>Barberger et al. 1996</td>
<td>Interview</td>
<td>Joint pain</td>
<td>Random population sample</td>
<td>2792 (2792)</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Period</td>
</tr>
<tr>
<td>Brattberg et al. 1996</td>
<td>Telephone interview</td>
<td>All types</td>
<td>Stratified random population sample</td>
<td>537 (537)</td>
<td>Mild to severe</td>
<td>Previous 12 mo</td>
<td>Period</td>
</tr>
<tr>
<td>Kendig et al. 1997</td>
<td>Interview</td>
<td>All types</td>
<td>Random population sample</td>
<td>1000 (1000*)</td>
<td>Weak to severe</td>
<td>Previous 12 mo</td>
<td>Period</td>
</tr>
</tbody>
</table>

* Persons ≥60 years old.
† See also Magni et al. 1990, 1992.
‡ See also Herr et al. 1991, Lavsky-Shulan et al. 1985.
Table II

Health status of older people

<table>
<thead>
<tr>
<th>Pain Prevalence</th>
<th>Young Old</th>
<th>Old Old</th>
<th>Oldest Old</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequent</td>
<td>32</td>
<td>36</td>
<td>34</td>
</tr>
<tr>
<td>Occasional</td>
<td>25</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>Never</td>
<td>43</td>
<td>44</td>
<td>43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pain Duration</th>
<th>Acute</th>
<th>Chronic</th>
<th>No Pain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>48</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>45</td>
<td>43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pain Site</th>
<th>Joints</th>
<th>Back</th>
<th>Legs/feet</th>
<th>Abdomen</th>
<th>Chest</th>
<th>Head</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>49</td>
<td>50</td>
<td>50</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>40</td>
<td>42</td>
<td>38</td>
<td>37</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>8</td>
<td>10</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>5</td>
<td>3</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Source: Adapted from Helme and Gibson (1997).

Note: “Young old” represents persons aged 65–74 years, “old old” 75–84 years, and “oldest old” 85+ years. Pain prevalence figures are percentage of positive responses in three categories (frequent = once or twice a week to daily, occasional = a few times a year to once or twice a month, never) to the question: “In the past 12 months how often have you felt pain that is persistent or bothersome or limits your activities?” Pain duration figures are percentage of responses in three categories (acute = less than 3 months, chronic = more than 3 months, or no pain) to the question: “About how long ago did you start having (your most severe) pain?” Pain site figures are percentage of positive responses to the question: “In the past 12 months, where is your pain?” (respondents were restricted to a maximum of three sites).

METHODOLOGICAL CONSIDERATIONS

The question remains as to why the studies in Fig. 1 demonstrate such widely disparate prevalence figures for chronic pain. Many reasons can be put forward, most notably methodological variations such as whether the means of data acquisition is by personal or proxy interview, telephone interview, or postal survey (postal surveys have a selection bias toward healthier older persons; Von Korff et al. 1990). Other considerations include the number of subjects in each age group and response rates, especially for the oldest old. The unreliability of memory of previous pain may be particularly important in older samples, where the effects of age-associated memory impairment and incipient dementia are frequent enough to seriously affect data acquisition in large-scale prevalence surveys. However, the most likely reason for the variation in absolute prevalence figures is the nature of the questions. Questions may involve the pain “window” (the time period over which pain is sampled), the time in pain within this window, the severity of pain, or the level of its interference with daily life (often recorded as whether the pain is “troubling” or “bothersome”), and the effect of cueing.

Most epidemiological studies differ on several of these points, making direct comparison difficult. For example, Roy and Thomas conducted their 1987 study on a convenience sample using telephone survey methods; the numbers of oldest old were small, and the measure of pain poorly specified. In contrast, Mobily et al. (1994) examined a randomly selected rural sample using direct interview techniques and limited questions regarding pain to the back, chest, legs, and joints. Given such fundamental differences, it is not surprising that absolute prevalence figures vary.

As might be expected, studies with a longer time frame tend to report higher pain prevalence (compare Crook et al. 1984 with Andersson et al. 1993). However, more subtle influences on the way the pain is defined are also important. Brattberg et al. (1989) examined the prevalence of pain in response to different questions in the same population. Positive answers to the question “any” pain were reported by 66% of respondents, pain “to a high degree” by 51%, “obvious” pain over one month by 44%, “obvious” pain over 6 months by 40%, and “continuous or nearly continuous” pain by 23%. The HSOP study (Kendig 1996) reported a slight increase in pain with age in females of 4.6% per decade if it occurred daily, but a decrease if the pain occurred from once or twice a month to a few times a year. Thus, it appears that both an age-related increase and a decrease in pain prevalence can be supported from the same database, depending on the stringency of the criteria used for describing pain as “bothersome.”

Cueing is more difficult to recognize because the nature and sequencing of the questions asked are rarely reported with the data. Nonetheless, the prevalence of pain in studies that ask for “any” pain before asking where that pain is located (Crook et al. 1984; Roy and
Pain in Older People

Thomas 1987; Andersson et al. 1993) is often strikingly different to that reported in studies that ask about pain in each anatomical location and then request specific details (Sternbach 1986; Von Korff et al. 1988; Brattberg et al. 1989, 1996; Mobily et al. 1994). For example, Mobily et al. asked respondents if they had experienced any pain in their legs at night or while walking, and then asked similar questions about joint pain, back pain, and chest pain prior to asking about any other pain condition. This type of rich contextual information is likely to provide a more salient prompt to the recollection of pain symptoms than studies like that of Crook et al. (1984) that simply ask whether the subject is often troubled by pain.

SITE OF PAIN

The site of reported pain is a major source of variation in prevalence figures between different studies. Several studies have examined pain at particular body sites, and while the absolute prevalence figures vary according to the temporal definition of pain, some consistent trends have emerged. The prevalence of articular joint pain more than doubles in adults over 65 years old compared to young adults (Sternbach 1986; Von Korff et al. 1990; Barberger-Gateau et al. 1992; Andersson et al. 1993; Harkins et al. 1994). The frequency of foot and leg pain also increases markedly with advancing age (Herr et al. 1991; Mobily et al. 1994; Benvenuti et al. 1995; Helme and Gibson 1997). Conversely, the prevalence of headache shows a progressive decrease with increasing age after a peak prevalence at 45–50 years of age (Sternbach 1986; D’Allesandro et al. 1988; Kay et al. 1992; Andersson et al. 1993; Harkins et al. 1994). The frequency of facial/dental pain and abdominal/stomach pain also appears to decline during old age (Kay et al. 1992). Chest pain probably is most prevalent during late middle age at the peak of ischemic heart disease, but declines thereafter despite the continuing high mortality from this disease (Sternbach 1986; Korff et al. 1988; Tibblin et al. 1990; Andersson et al. 1993). The findings are more equivocal with respect to back pain. Harkins et al. (1994) and Von Korff et al. (1988) report a small but significant increase in back pain with advancing age, whereas other studies have shown the reverse (Sternbach 1986; Tibblin et al. 1990; Andersson et al. 1993). A summary view would be that head, abdominal, and chest pain frequency are reduced in older people and that joint pain is increased. Age-related back pain prevalence varies among studies, so no definite opinion can be provided on how age affects that condition (Gibson and Helme 1995).

GENDER AND PAIN

Almost 60% of persons more than 65 years old are women, and by the year 2020, 73% of those aged 85 and above will be women (Ruda 1993). Given this disproportionate representation within older segments of the population, any gender differences in pain complaint could greatly affect age-specific pain prevalence estimates. Most epidemiological studies have indicated that women have a significantly higher prevalence of pain when compared to men of similar age (Crook et al. 1984; Lavsky-Shulan et al. 1985; Sternbach 1986; Von Korff et al. 1988; Magni et al. 1990, 1993), although there have been some exceptions (Brattberg et al. 1989; Anderssen et al. 1993). The magnitude of gender differences in pain prevalence may depend upon the type of disease. Rheumatoid arthritis, osteoarthritis, headache, and fibromyalgia are more common in women, whereas gout, ankylosing spondylitis, and coronary heart disease are more common in men (Berkeley 1993). Biological factors probably contribute to some of these differences, and there are documented changes in pain report during pregnancy and during the different stages of the menstrual cycle (Ryan and Maier 1988; Polleri 1992). Socialization and lifestyle factors in self-report of pain must also be considered, and at least some of these influences are unlikely to change across the adult lifespan. Biological factors may be less important in persons of advanced age, but unfortunately little systematic research has focused on gender differences beyond the reproductive years. The prevalence of headache is 15% higher in middle-aged women than middle-aged men, but this apparent gender difference disappears in persons over the age of 70 years (D’Allesandro et al. 1988; Von Korff et al. 1988). Abdominal and visceral pain complaints are more common in women aged 18–40 years than in men of the same age, but are approximately equal in older men and women (Von Korff et al. 1988; Tibblin et al. 1990; Brattberg et al. 1996). Conversely, gender differences in backache, joint and leg pain, and multiple pain complaints may be preserved with advancing age (Lavsky-Shulan et al. 1985; Tibblin et al. 1990; Mobily et al. 1994). Gender
changes in the function of nociceptive pathways could lead to reduced pain sensitivity during senescence.

ISSUES RELATED TO SELECTION BIAS

The sequestration of elderly pain sufferers into nursing home care appears an unlikely explanation of reduced pain prevalence in older persons in the community. Studies of pain prevalence in institutional settings have largely been conducted in North American nursing homes and independent but supervised living accommodations for the frail elderly (Roy and Thomas 1986; Ferrell et al. 1990; Parmelee et al. 1991, 1993; Sengstaken and King 1993). Although the methods of pain measurement are not always clear and vary among studies, all such studies showed pain prevalence to be high, ranging between 70% and 83%, with severity ranging from mild to severe. Most reported pain was in the back and joints. Ferrell et al. (1990) used a measure of present pain intensity from the McGill Pain Questionnaire (MPQ) and found that 66% of subjects had no pain at the time of interview. These prevalence figures are approximately commensurate with those from community samples (Roy and Thomas 1986; Mobily et al. 1994). Depression, a common problem among institutionalized patients, is also likely to influence the prevalence of pain (Parmelee et al. 1991; Casten et al. 1995). Magni et al. (1985) found that 96% of the depressed and 80% of others reported pain in a geriatric hospital setting. Thus, institutionalized persons appear to be a cohort of the very old with high rates of pain, although they seem to have the same disorders at the same prevalence rates as people of similar age who reside in the community. No large-scale study has compared the same measures of pain in community and institutionalized samples, although a small study by Roy and Thomas (1986) directly supports the view that pain is equally prevalent in elderly persons in the community and in institutions. Given the relatively similar pain prevalence figures between institutionalized and community-dwelling persons over the age of 80, even high rates of institutionalization approaching 30% would be expected to have little overall effect on community prevalence rates. Moreover, most of the reported decrease in pain occurs at an age when institutionalization rates are less than 1%.

The high response rates in most large-scale epidemiological surveys suggests that the prospect of an age-specific drop-out of older persons with pain should
not be viewed as a major concern. However, response
dates may depend upon the method of data acquisition,
as personal interview appears to result in a higher yield
of older persons when compared to postal surveys, and
response rates vary across different age groups when
postal survey methods are used (Von Korff et al. 1990). Recent epidemiological investigations in which
the study population was restricted to persons aged 65
and older have generally noted a higher overall
prevalence of pain than has been found in cross-
sectional studies that cover the entire age range of the
adult population (Lavsky-Shulan et al. 1985; Barberger-
Gateau et al. 1992; Mobily et al. 1994). These restricted
sample studies have used methods tailored specifically
to recruit older individuals, and they usually contain a
much larger sample of adults in the seventh, eighth,
and ninth decades of life. The findings of higher pain
prevalence in restricted elderly samples are of concern;
however, the difference between these and cross-
sectional population studies is not large, and both types
of investigation support a decline in pain prevalence
from younger elderly adults (aged 65–75 years) to
those of more advanced age (85+ years).

Finally, the issue of survivorship as an explanation
for decreased pain report among the very oldest also
appears unlikely. In general, studies that report
prevalence rates of asymptomatic pathology, such as
that of the spine (Wiesel et al. 1984; Jensen et al. 1994),
show a progressive increase with increasing age. Rates
of disability also increase into the very extremes of old
age. A retrospective investigation showed pain report
to be even more frequent during the last years of life
(Moss et al. 1991).

AGE-SPECIFIC RESPONSE BIAS AND
MISATTRIBUTION

The context in which painful symptoms are procesed
and the meaning attributed to them are recognized as important factors in shaping the pain ex-
perience (Melzack 1973). Older adults may attribute
pain symptoms to the normal aging process rather than
perceiving them as a warning sign of injury or disease
(Stoller et al. 1993). Several studies have demonstrated
that mild pain symptoms do not affect self-rated per-
ceptions of health in older adults as they do in the
young (Tornstam 1975; Ebrahim et al. 1991). Mis-at-
tribution of mild aches and pains to the normal aging
process greatly reduces the importance attached to
this symptom and may even alter the fundamental
meaning of pain. Pain may also be judged as a relatively
minor problem when compared to other concurrent life
circumstances such as the loss of a lifetime partner or
increasing levels of morbidity and disability that
threaten loss of functional independence. One impor-
tant consequence of such life events and the mis-
attraction of pain symptoms is that older adults will be
less likely to endorse questions pertaining to the
presence of “bothersome pain” or “being often troubled by pain.” However, severe pain symptoms are
always interpreted as signs of serious illness, irrespec-
tive of age (Leventhal et al. 1993), and the elderly are
more likely to seek medical attention than are younger
persons when faced with severe pain (Stoller et al.
1993).

Another form of age-specific response bias that
could affect pain report relates to stoicism, or alterna-
tively, a decreased willingness to label a sensation as
painful. There is a commonly held view that older adults
are more stoic in reporting clinical pain sensations
(Portenoy and Farkash 1988; Hofland 1992; Foley
1994), although empirical studies have yet to substanti-
tiate this view. In an extensive series of studies,
Botwinick (1984) has shown an age-related increase
in the tendency toward cautious response patterns for
most tasks involving sensory threshold processing.
Psychophysical studies of pain perception are consist-
ten with this view and suggest that elderly persons
adopt a more stringent response criterion for the
threshold report of pain when faced with low-intensity
noxious stimulation (Clark and Mehl 1971; Harkins
and Chapman 1976, 1977). It is difficult to estimate
the extent to which stoicism, misattribution, or
cautiousness might influence pain prevalence figures
in older persons. The effect of response bias (either
stoicism or cautiousness) and misattribution appears
to be most pervasive at lower intensities of noxious
sensation. This could result in the under-reporting of
mild or weak pain symptoms by older persons, but
would be unlikely to affect reports of moderate to
severe pain.

AGE-RELATED CHANGES IN NOCICEPTIVE
FUNCTION

One of the reasons for a decline in pain complaint
after the age of 65 years despite increasing morbidity
from pain-associated disease may be reduced function
in nociceptive pathways. The results from psychophysical studies using experimentally controlled levels of noxious stimulation are somewhat equivocal with regard to age differences in pain perception. Many studies have shown a progressive decrease in pain sensitivity with advancing age, but there have also been numerous reports of no age difference, particularly when using electrical stimulation (for review see Gibson and Helme 1995; Harkins et al. 1996). A recent study using differential nerve fiber blockade has shown that older persons rely on C-fiber activation before reporting the presence of pain, whereas younger adults utilize the additional information from A-delta nociceptive fibers (Chakour et al. 1996). Moreover, when A-delta-fiber input was blocked in young adults, the observed age differences in pain threshold and subjective ratings of pain intensity disappeared. Age differences in the temporal summation of nociceptive input also varies as a function of nociceptive fiber type (Harkins et al. 1996), and such differential age effects on A-delta and C-fiber function may help explain some of the disparity in psychophysical findings.

Studies of clinical pain states have also indicated that older persons exhibit a relative absence of pain in the presentation of certain visceral disease states such as ischemic heart pain and abdominal pain associated with acute infection (Albano et al. 1975; MacDonald et al. 1983; Norman and Yoshikawa 1983; Clinch et al. 1984; Solomon et al. 1989; Muller et al. 1990). Unfortunately, most of the clinical studies are difficult to interpret because the severity of pathology is seldom reported. Nonetheless, controlled investigations of myocardial pain during exercise-induced ischemia provide support for the view of a clinically significant decrease in ischemic pain perception with advancing age (Miller et al. 1990; Ambepitiya et al. 1993, 1994).

There is limited evidence of age-related changes in the physiological functioning of peripheral and central nervous system (CNS) nociceptive pathways. For instance, a marked decrease in the density of myelinated and unmyelinated nerve fibers has been noted in older adults (Ochoa and Mair 1969), and nerve conduction studies indicate prolonged latencies in peripheral sensory nerves in apparently healthy older persons (Desmedt and Cheron 1980). Stimulation of cutaneous nociceptors on some finely myelinated A-delta and unmyelinated C-fibers produces impulses that travel both to the CNS to signal pain and along axon collaterals to initiate a neurogenic vasodilatation or flare around the site of stimulation. Older persons show a significant reduction in the neurogenic flare size, which provides further indirect evidence of altered primary afferent nociceptive function (Helme and McKernan 1985; Parkhouse and Le Quesne 1988; Ardon et al. 1991). Under certain conditions, the size of axon flare is highly correlated with the perception of pain (Helme and McKernan 1985; Gibson et al. 1994), and these responses are thought to play an important role in primary hyperalgesia and wound healing.

With regard to CNS processing, the Cerebral Event Related Potential (CERP) in response to noxious thermal CO₂ laser stimulation is also altered with advancing age (Gibson et al. 1990, 1994). This electroencephalographic response to a noxious stimulus shows a strong relationship between peak amplitude and subjective ratings of pain in response to increasing strength of stimulation. The CERP is a sensitive measure of analgesic efficiency and is affected by levels of arousal and attention. It is therefore thought to represent integrated CNS processing of afferent noxious input. A recent study has shown an age-related increase in the latency of CERP components and a reduction in peak amplitude in older people (Gibson et al. 1990). These findings suggest an age-related slowing in the cognitive processing of noxious information and a reduced cortical activation in response to noxious input.

In summary, limited evidence from physiological studies and psychophysical investigations suggest age-related alterations in the function of peripheral and CNS nociceptive pathways. These changes are likely to influence sensitivity to painful sensation and would be expected to contribute to a decline in pain report in persons of advanced age. However, most of the evidence of age differences in nociceptive function is indirect, and the clinical relevance of reduced pain sensitivity to experimental pain stimuli is still the subject of considerable debate (see Harkins et al. 1994). It seems likely that pain report does decline as a consequence of age-related changes in nociceptive function, but more definitive studies on physiological changes in nociceptive pathways are needed in order to fully resolve this issue.

CONCLUSIONS

Most cross-sectional epidemiological studies have shown that the overall prevalence of pain increases with advancing age. Absolute prevalence rates vary considerably among different investigations, which
probably reflects the nature of questions asked, including the time window for pain assessment, the time in pain within this window, and the severity and site of pain included within the prevalence estimate. The well-documented increase in pathological load, particularly degenerative joint and spine disease and leg and foot disorders, may help explain the increased frequency of pain report in surveys of older persons. However, it is also apparent that the age-related increase in overall pain prevalence does not continue beyond the seventh decade of life. The reasons for maintaining a steady frequency of pain report beyond that time remain largely unknown. Issues relating to selection bias, response bias, or misattribution of pain that time remain largely unknown. Issues relating to selection bias, response bias, or misattribution of pain symptoms and possible age-related changes in the function of nociceptive pathways may play some role in explaining this trend. Future studies will need to focus on the development of pain over the life-span of the individual and on the influence on pain report of losses in independence brought about by diminished functional capacity, death of spouse, and altered socioeconomic status as well as the effects of dementia and depression. There remains the more difficult task of accurately determining the effects of pain from uncommon or short-lived disease states such as cancer, fractures, and infections on health outcomes and costs.

REFERENCES

Berkeley KJ. Sex and chronobiology: opportunities for focus on the positive. Newsletter of the International Association for the Study of Pain, January 1993.

Correspondence to: Robert D. Helme, MBBS, PhD, FRACP, National Ageing Research Institute, PO Box 31, Parkville, Victoria 3052, Australia. Fax: 61-3-389-7148; email: r.helme@medicine.unimelb.edu.au.